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ZBYE (Business thinking)
FMEEY“E5S (BUSINESS)” — L 2FSMHIRBE ZFIBRYARZR (making decisions to earn more profit)
BEIERIT (Management skills) — WA SCARLR R
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IESHAY5 AL (Data Analytics methods)
Hst, #URDTEEEARASE (HisToRY view about Data Analytics)
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KB lss=IIHEUE S T/57% (BASIC + ADVANCED) — ETEHEAYANR &I (KDD)
4. SEREIS (Practical skills)
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m e IO

B AESHEHE R e SEE
5. RIERS




— e n93%15 (OPTIMIZATION)

OEREWMBEATF -
® Optimization? S{t{t?
® A Dbrief history

® Calculus ([partial] derivative) + Linear Algebra — modern tools for
optimization
> Calculus of variations [Z9354]
> Operational Research [[Z&%]

Ofuitin=aeies REFERE S

® LP, NLP (QP,SOCP,SDP, CP, PP)
® Solutions: Descent, Newton, ...




{4t (Optimization)FToREATE

C0We always intend to maximize or minimize something

M from engineering design to financial markets

» Design the shape of a car with minimum
aerodynamic drag [zSE74]

57

® from our daily activity ”? 2

to planning our holidays »
R W %0

=R !
%28 .
gy H— FORKIPRE RS, RARS, BIRRT,
"’5"""’:‘?;';"% - 166 j%l:l—lgéiiﬂ(‘]%ﬁ%ﬂﬁﬁ/l\]%j( E{J?é\:%o
~IER

® and computer sciences to industrial applications /°><°\.
»the maximal network flow ® 2
el e

Shortest path/Critical path

4

H o U FASEITHORA KRR RS D2




HL, aSRlESmET

0300 BC

B Euclid proved that

»a square has the greatest area among the rectangles with given total length
of the edges

> ICE

E, ERKITHA

A (1

E AR ZRIRS) ERREK

PRFNTE QAT Ak B 2 — $2

BE: JBEig It v A AR
43 (calculus) 1 fiifk i
(Optimization) !
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Matthius Merian the Elder, in Mistorische Chronica,

Dido Purchases Land for the Foundation of Carthage. Engraving by

imal domain,

Frankfurt .M., 1630, Dido’s people cut the hide of an ox into thin strips and try 10 enclose a max




17th — 18t century
CoV: Calculus of Variations [4i]

® Before the invention of calculus of variations only some odd [Z&{AY]
optimization problems are being investigated.

Oowith calculus, the Stationary poll fThﬁse concgpgs a"ﬁ
satisfies f'(x) = 0 with second deri JataXely SRS LD =
e o Dim vectors and
M (Local) Minimum: f"(x) > 0 matrices
M (Local) Maximum: f"(x) < 0
M Point of inflexion f"(x) =0

fiix) <), fixr=0
f{x)=0
| fixy=<0 flixy =0
J{.'Egj;‘};»"’ fix) <0, £ >0 Fix) <0
flixr=<0 fix)=0

inflection point HUimum XML



https://en.wikipedia.org/wiki/Stationary_point

General form of Optimization problems

Objective Function

RERZNCSEAY

Constraint [Z] ] —

Inequality [H553\]

ize  f(x)
.. |
tto g;x)=0 forj=1,2,..., J

Constraint [£J ] h)=0 fork=12 ..., K
— Equality [453(]




Optimality Conditions 2

Since f'(z*) = 0, we have to consider the second derivative term.

This term must be non-negative for a local minimum at =

Since €2 > 0, then f”(z*) > 0. This is the second-order optimality condition.
Thus the necessar}f conditions for a local minimum are:

Wh B SR
fi(@") =0
f”(ﬂj*) 0
We have a strong local minimum if
fl(z*) =0
f”(:ﬁ*) } U

which are sufficient conditions

e kAt




Example A: unconstrained OP
You all may remember “#{gx#: Extreme value theorem”

f(x) = 5x% — 36x7 + 182 x* — 60x7 + 36

A _ 30x5 — 1800+ + 330x° — 18022 = 30x2(x — 1)(x — 2)(x — 3)

dx

Stationary pointsx =0, 1, 2, 3

”;hl = 150x* — 720x* + 990x> — 360x

(X
X f(x) d*f/dx*
0 36 0
1 27.5 60  -Local minimum
2 44 —120  -Local maximum
3 5.5 540  -Local minimum

;'3
Atx=0 T 600x — 216052 + 1980x — 360 = —360 - Inflection point
dx: [354]




020178E8H18H23:19:13
O e HRES
1 Matlab
B >> x=[-0.1:0.0000001:3.1];
B >> fx=5*x."6 —
36*x."5 + 165/2*x.N4
- 60*x."3 + 36;

o >> plot(x,fx)

O XY
OAE, —HIBRRE
AX, BALE O

B Figure 1

File Edit View

Udde | b
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Example B-1

B f(x) =2x — x*
» First derivative?
»Second derivative?
» Stationary point — Max, Min, Inflection point [¥5:2]?




brachistochrone [bra kista kraun]

n. SRS, BOEMRLL, T RO TR BN B

[0 Skills for stationary point could be extended to multivariable
functions with the help of LA (Linear Algebra)

B Matrix Calculus [¥BFF53#f]

[0 CoV: Calculus of variations [#E#i£] — to find optimal function

M |ssac Newton (1660s) and G. W. von Leibniz (1670s) create
mathematical analysis that forms the basis of calculus of variations
(CoV).
[bre'kiste kreun] Ml Brachistochrone Problem [siEmusniss]

» 1696 Johann and Jacob Bernoulli studied Brachistochrone's problem,
calculus of variations is born

» Find the shape of the curve down which a bead sliding from rest and
accelerated by gravity will slip (without friction) from one point to another
In the least time.



http://mathworld.wolfram.com/BrachistochroneProblem.html

https://zh.wikipedia.org/wiki/ £ 5 [ 45 [ 75

0 Many CoV problems are from physics — modeling [##]
capability is quite powerful!



https://zh.wikipedia.org/wiki/最速降線問題

Early 19t century —
Operational Research [IZB%&%]

0 After the world war Il optimization develops simultaneously with
Operations Research (OR).
® J. Von Neumann is an important person behind the development of
operations research.
O The field of algorithmic research expands as electronic calculation
(Computers) develops.
W 1947 George B. Dantziq, who works for US air-forces, presents the

Simplex method [EE&E#2] for solving LP-problems, John von Neumann
establishes the theory of duality [¥J{E] for LP-problems




NLP? — At least one of The previous extreme-value
the objective and theorem based method

constrained_ functions is . : could not be used for LP.
not linear Why?

are linear
min z =¢,%; +C,%; +*** +C,%,

=, L ar“xl +an2 s bl 't'ahx,‘Sbl

a‘llxl +an1 e Dot +a,,x,=sb,

G %, +8 % + - +a,_x <=b_

Xyy Zay **°y quO




Here the math I1s based on

Vectors, later simplified
Into Matrix

'8

minimize ¢
subject to alx < by, i=1,...,m.
Here the vectors e.aq. ... . a, € R"
and scalars by,.... b, € R are problem pa-
|

rameters that specity the objective and
constraint functions.




Anecdote

C0Top Prizes w.r.t
Optimization
B The George B. Dantzig Prize
(pure optimization:

Mathematical Optimization
Society)

» The Dantzig Prize was
founded by a group of
George B. Dantzig's former
students (R. W. Cottle, E. L.
Johnson, R. M. van Slyke,
and R. J.-B. Wets) and was
first awarded in 1982.

Past Winners of the Danf

Year
1982

1985

1988
1991

1994

1997

2000
2003

2006
2009
2012

Winners

Michael 1. D. Powell,
R. T. Rockafellar

Ellis L. Johnson,
Manfred Padberg

Michael J. Todd
Martin Gritschel,
Arkadi Nemirovski
Claude Lemaréchal,
Foger Wets

Stephen M. Robinson,
Roger Fletcher

Yurii Mesterov
Jong-5hi Pang,
Alexander Schrijver

_____


http://dict.youdao.com/w/anecdote/#keyfrom=E2Ctranslation
http://www.mathopt.org/?nav=dantzig
https://www.siam.org/prizes/sponsored/dantzig.php

« 2004 ). Michael Harrison

A n e C d O t e s for his profound contributions to two major areas of operations researct
« 2003 Arkadi Nemirovski and Michael J. Todd

« for their seminal and profound contributions in continuous optimization

D Top Prlzes W.r.t Optlmlzatlon « 2002 Donald L. lglehart and Cyrus Derman

s for their fundamental contributions fo performance analysis and optimi:

« 2001 Ward Whitt

| J O h n VO n N eu m an n Th eo ry s far his contributions to queueing theary, applied probability and stocha:
Prize (Operational Research) iy cogm o
> The John von Neumann Theory Prize of =27 ol

. ] = 1997 Peter Whittle
the Institute for Operations Research and . 1996 peter c. Fishbum

the Management Sciences (INFORMS) is = %% foon Bales

. . . » 1994 Lajos Takacs
awarded annually to an individual (or « 1993 Robert Herman

Sometlmes a group) Who haS made » 1992 Alan ). Hoffman and Philip Wolfe
« 1991 Richard E. Barlow and Frank Proschan

fundamental and sustained contributions | ;540 richard kare
to theory in operations research and the - 1989 Harry M. Markowitz

management sciences. It is regarded the  * % rerbertA simon
« 1987 Samuel Karlin

‘Nobel Prize of the field. ¢ 1986 Kemeth . Ao

« 1985 Jack Edmonds

>George B. Dantzig IS the 1St » 1984 Ralph Gomory

s 1983 Herbert Scarf

winner of this prize (1975) » 1982 Abraham Charnes, William W. Cooper, and Richard J. Duffin

« 1981 Lloyd Shapley

v 1975 George B. Dantzig for his « 1980 David Gale, Harold W. Kuhn, and Albert W. Tucker
work on linear programming - 1678 o . N and Carton . Lo

e 1977 Felix Pollaczek

« 1976 Richard Bellman

« 1975 George B. Dantzig for Ais work on finear programming


http://dict.youdao.com/w/anecdote/#keyfrom=E2Ctranslation
https://en.wikipedia.org/wiki/Institute_for_Operations_Research_and_the_Management_Sciences
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Nobel_Prize
https://en.wikipedia.org/wiki/George_B._Dantzig
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/John_von_Neumann_Theory_Prize

COptimal control theory begins to develop as a separate

discipline from CoV.

M Space race gives additional * R »
boost for research in optimal T“E’SEZPCUSER RACE
control theory

01957 Richard E. Bellman presents the optlmallty prlnC|pIe [{ICAG R EE]

® We'll meet this in MDP — Markov
Decision Process [ REIREA]
B But you may have known it by the

shortest path or critical path in
network flow




01984 Narendra Karmarkar’s polynomial time algorithm for LP-
problems begins a boom of interior point methods [RE}A].

B The first polynomial time algorithm for LP, the ellipsoid method [H#gEk; %], was
already presented by Leonid Khachiyan in 1979

S 3

https://en.wikipedia.org/wiki/Leonid_Khachiyan



https://en.wikipedia.org/wiki/Leonid_Khachiyan

[01980s as computers become more efficient, heuristic algorithms [|§
AZI\EiX] for (global) optimization and large scale problems begin to
gain popularity

1. Genetic Algorithm [[E{E&EA]
2. Simulated Annealing Algorithm [#&=HLUE K EE]
3. Ant Algorithm [$YE¥E5X]

[01990s the use of interior point methods exg Here the math is Matrix
optimization [SDP: S IETEFEI] (Vector of Vectors)

1. Ais (positive) semidefinite matrix, and write A > 0, If

are nonnegative.
2. As (positive) definite, and write A > 0, If all eigenvalues of A are positive.




22 4 1 2 22 —

(definite) (semidefinite) (indefinite)

0 For 3 D (Extended to vectors), Gradient = First derivative, Hessian matrix =
Second derivative

B F(x,y) =x%+y?

OF

ax

OF

ay

[ 02F  02%F |
0x%2  0x0dy
0%F  09%F

|0ydx  0y? |

B Gradient: VF(x,y) =

M Hessian: Hp =

M Necessary cond. for optimizer: VF(x,y) = 0=» Z—I; =2x=09x=y=0

B Hessian: Hp = [(2) g = 0 is definite, which implies (0,0) is the global optimizer — minimum




Proposition 1.1 For a symmetric matriz A,

the following conditions are equivalent.
(1) A=0.

(2) A=U"U for some matriz U,

(3) x"Azx =0 for every x € B".

(4)  All principal minors of A are nonnegative.
®
O

Do you remember Principle

minor [£F=]? ©



http://www.readorrefer.in/article/Necessary-and-Sufficient-Conditions--Unconstrained-Problems_11261/

— Example 18.1-1

Consider the function
f(xy, X2, x3) = X; + 2x3 + x3%3 — x{ — x§ — x}
The necessary condition Vf(Xp) = 0 gives

of

— =1-2x,=0
6X|
of
a—xz'= X5 —2:2 =0
of

= + Xy - =
a3 2 X 2X3 0

The solution of these simultaneous equations is
- (] %4
Xo = (z- 3 3)

To determine the type of the stationary point, consider

>f ’f af
axt  axdx; dx9x,
. & & Ch 2 0
D = S el B R
8x23xl axz 012813
*f P a*f ¢ 1

axydx,  Axydxy  ax}

« The principal minor [£Fx]
determinants [f75I=] of H|,,
have the values -2,4, and -6,
respectively.

* Thus, H|,, Is negative-
definite and x,= (1/2, 2/3,
4/3) represents a maximum
point.



http://www.readorrefer.in/article/Necessary-and-Sufficient-Conditions--Unconstrained-Problems_11261/

[l 1st order leading principal minor

-2 0 0 _ ]
9 1) Determinant [4T%]2] is -2

0 1 =2

[0 2nd order leading principal minor

-2 0] 0 _ _
0 -2 1) Determinant Is
0 1 -2 (-2)*(-2)=4

03 order leading principal minor . .
Determinant Is

(-2)*(-1)*(-2)*(-2)-1*1]
= (-2)*1*[4-1] = -6




aijpy a2 --- Qin
agz1 a2 ---  d2pn |
Definition: Let 4 = _ _ _ | be an n X n symmetric maf

| Onl  dn2 fdnn

a1 @2 - Q1§

ap azz --- @G|

andlet D)y = | _ ~(fore=1,2,...,n Then:
iy @42 - g

a) A is said to be Positive Definite if 1); = 0forz =1,2,...,n.

~ b) Ais said to be Negative Definite if I; < Oforodd i € {1,2,...,n}
and D; > Oforeveni € {1,2,...,n} -

c) A is said to be Indefinite if det( A ] Dn # (0 and neither a) nor b} hold.

d) If det(4) = Dy =0, then A may be Indefinite or what is known

| Positive Semidefinite or Negative Semidefinite.
The values D) fori = 1,2,...,n are the values of the determinants of
the i = 1 too left submatrices of A Note that

i1 L

a1 as



http://mathonline.wikidot.com/definite-semi-definite-and-indefinite-matrices

20t century - present

3 powerful math tools
— Lagrange Multiplier, Duality, KKT

[0 Extended to NLP (Nonlinear Programming) With previous ways or new

Ideas
® Derivatives are general
> 1-D: 1st and 2" derivative
> n-D: Gradient [#5/E] and Hessian matrix

B Lagrange transform/multiplier [Rf&RAR3

&)

» Convert constrained optimization problems into unconstrained

B Duality [XJ{8] proposed by von Neumann
» Min max = Max min

B KKT : Karush—Kuhn-Tucker [RZEZE - EE - B505R4]
» Necessary condition for optimization problems

B Numerical computation — &{EiTHE

> (Gradient) Descent [(15E) TFF], Newton [41R;%], Quasi Newton [fA415%]. ..




— et n93%15 (OPTIMIZATION)

IEZERMBAEBAF -
® Optimization? J&{{L?
® A Dbrief history

® Calculus ([partial] derivative) + Linear Algebra — modern tools for
optimization
> Calculus of variations [Z29372%]

N

O eI tes R ERRG 5
@ LP, NLP (QP,SOCP,SDP, CP, PP)
® Solutions: Descent, Newton, ...




Now we have many optimization (programming)

] Gen erally, 2 Categories NLP: Natural Language Processing

® P and NLP: Non-Linear Programming

min z =¢,x, +Cy%; +°** +C,%,

. s. L @, %X, +8,%, + +a,.x, <b
NLP: Non-Linear Program
Gy %) +8n% + 00 +65,%, b,

Q% +0. %+ +a',_x,,$b,,
o Xyy ®29 "7y quO

»NLP: One of objective function or constrained functions is non linear
v'By linear, the order of the variables is 1.




min z=c¢,xX, +C,%, +*** +¢ %
DLP 1°*1 242 an
8. L a“x| +a|2x2 s LR 't'al.anbl

02131 +an1 : s +a25xu£bl

Q% +0a.,%; +---+a',,_x,,$6,,
Xyy Xy v, %, 30
CONLP

1/2
> max(xy) mj_u/zl (1+{y']2) da
~8.t Z0 y

x+y=C F — o Fyr = constant

vx>=0,y>=0




[0 More precise about Optimization
B According to LU Wu-Sheng@UofVictoria and Stephen Boyd@ Stanford

NLP:
Non-Linear

LP: Linear Programming
Program

QP: Quadratic Programming — X
)

SOCP: Second Order Cone
Programming — 431 %)

SDP: Semi-definite Programming -
1E 7€ Fi K

CP: Convex ik
rules/theories for CP so far. PP: Polynomial Programming

But for “real” NLP? Only
heuristic ...specific solution

for specific NLP



r L
WSS Global
:f Optimization

Nonlinear 4
Equations e ',

Optimization




Convex optimization problem

minimize  fp(x)
subject to fi(x) <b;, i=1,....,m

e objective and constraint functions are convex:

filax + By) < afi(z) + Bfi(y)

ifatB=1a>082>0

o includes least-squares problems and linear programs as special cases




Convex and concave functions in two variables

f(x1, x2) flx1, x2)

I

—:=x2

X1
(@) (b)

Figure A.2 Functions of two variables: (a) convex function in two variables; (b)
concave function in two variables.




he general form

Minimize  f(x)

Subject to g;(x) = 0 forj=1,2,....J
h(x) =10 fork=12,....K
X = (X, Xy oL Xy)

04 specific types according to difficulty
B No constraints, Minimize  f(x)
X = (X Xoe oo o2 Xy)

_ _ Minimize f(x)
B Only equality constraints, Subjectto j (y=0 fork=1.2..... K
X=X % .0 ~aki)
Minimize  f(x)

B Only inequality constraints

~

" Subject to  g;(x) = 0 forj=1.,2,..., J
X=Xy Xos 000+ 5 %K)

B Hybrid: equality and inequality constraints.




3 powerful math tools
Lagrange Multiplier — Lagrange Multiplier, Duality, KKT

The Lagrange method writes the constrained optimization
problem in the following form

Objective

mﬂx Constraint(s)
Choice
varia I::llé._ _@

sttbject to

The problem is then rewritten as follows

| = f(x.y)+Ag(x,»)

Multiplier [assumed greater or equalto zera)




So, we have our Lagrangian function....

L =7 (xy)+Ag(x.)

We need the derivatives with respect o both %" and v’ to be zero

1, =f(x.p)+2g, (x.y)=0
1, =f(xy)+Ag, (x.¥)=0

And then we have the “multiplier conditions”

220 glry)z0  Jglx.y)=0




0 Example B:
Maximize f(x) = x; + X,
Subject to  x7 + x5 = 1
Lix;v)=x, +x, —vx; +x3 — 1)

dL
— =1 —-2vx, =0
0x,
dL

=1 —2vx, =0
0x, -

hix)=x;+x3—1=20




Lix:v)=x, +x, —vix; + x3 — 1)

positive definite

negative definite




William Karush Harold W. Kuhn  Albert William Tucker

https://en.wikipedia.org/wiki/Harold_W. Kuhn

https://en.wikipedia.org/wiki/Albert W._Tucker

https://en.wikipedia.org/wiki/William_Karush



https://en.wikipedia.org/wiki/Harold_W._Kuhn
https://en.wikipedia.org/wiki/Albert_W._Tucker
https://en.wikipedia.org/wiki/William_Karush

min 2z = e %1 L 222
s.t. r1+1,<1
L1, L2 :j 0

First we rstate the NLP as:
min 2z = e~ 4+ ¢~ 272

s.t. 11+ ax9<1
—$1£0
—$2£0

Next, we apply thL KKT COIIdlt]OIlb
KKT 1: Z)\ag“ —0 j=12

o &EJ — Ox;
=1 —e ™ +[A Aa(—1) + X3(0)] =0
J e +[_f1( )+ Aa(=1) + A3(0)]
= —e T+ A=A =0
j=2 =277 4 [A(1) + A2(0) + A3(=1)] =0
= =24 N = A3 =0
KKT 2: \ilbi — gi(®)] =0 ?—123

9 1 =1 )\1(1—.’1}1—1'2 _0
1= 2 )\QJ’J]-U -

® - Noz2 =0 [N
KKT 3: A >0 i=1.2310 _




O Thus we must solve equations (1) - (6) for x,, X, and A, A,, A; with the condition
that x, and x, must also be feasible.
s.t. 1+ x9<1

Ly, 2 :_}0

0 These equations are nonlinear, and there is no general method to solve nonlinear
equations analytically

O For our system, note that since we must have x;>=0, then either x;>0
or x,;=0. Therefore, we have 4 situations

Case 1. 11 =0, 15 = 0.
From (3): A\; = 0.
Now from (1): —e” +0 — Ay =0
— —1—5\;3:0 — 5\22—1}
which is not valid.




Case 2. T = U, To > ().
From (5): A3 = 0.
Now from (2): —2e7 272 4 )\, — () =0
= N\ = 2¢ %2 > (. Since \; > 0,
equation (3) implies that 1 — 7y — 79 = 0
= 1-0-2,=0 <= Iy =1L
And so this gives A\ = 2¢72.
And now from (1) we have —e? +2e 2 — Xy = 0
= M =2e2-1~—-0.729 <0
which is not valid.
Case 3. 71 > 0, 79 = 0.
From (4): Ao = 0.

Now from (1): —e ™™ + X\ —0=0 <= )\ =e ™ > (. Since \; > 0, equation
(3) implies that 1 — 2 — T, =0 <= 1 -7, —0=0 <= x; = 1. This yields
)_L]_ = E:_l.

And now from (2) we have —2e% +e 1 —M\3=0 < M =e¢1-2~x-1632<0
which 1s not valid.




Case 4. 71 > 0, T9 > 0.
(Since the first three cases yield invalid solutions, this case must give us the correct
solution. )

From (4) Eg = 0.
From (5): A3 = 0. B )
Equations (1) and (2) now yield \; = e~™ and A; = 2e ™, respectively. Since

A = e T >0, equation (3) implies 1 — 7, — I3 =0 <= I =1— 1y Using this
result and equating the two expressions for A, yields

e~ T = Qe
< —I;=In2 -2,

— —(1 —.'1_32) =1n2 — 27,

1
= Iy = g(l +1n 2)
from which we get #; = 3(2 — In2) and A\, = 2"/,

Thus, the solution to the system of equations (1)—(6) is 7; = %(2 —1n2), o = 13(1 +1In2),
A = 213723\, = 0, and \3 = 0: furthermore, #; and 7 are the optimal solution values
to the original NLP. To finish we find the optimal z-value:

Zmax = € ' + 742

= 3(2e)7%/3




Regularization [TERI{E] skill

0By adding some regularization part into the objective function, we
can confine the shape of the target parameters

O V}J/i%e}spread used in ML (Machine Learning), CV (Computer Vision), etc.
EqEVE!

Ridge RegressionfIft{iL Bir9:

. —. L1 norm [L1JER] — where p=1, || X]|l; = 3M.|x;
LﬂSSDE@ﬁE{{E*ﬁ;’B: [ Lﬁ] . P X1 = Xi=1lxl
LO norm [LOJEx] — Special: least non-zeros

* . 1
8" = argmin —|ly — XBI3 +]AI18]l |

Lasso®ii%: (Least Absolute Shrinkage and Selection Operator, X iF#/NESHERSAEREE 7. BREE)




Freldee

Chapman & Hall/CRC W
Machine Learning & Fartern Recognition Seriey
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IEZERMBAEBAF -
® Optimization? J&{{L?
® A Dbrief history

® Calculus ([partial] derivative) + Linear Algebra — modern tools for
optimization
> Calculus of variations [Z9354]
> Operational Research [[Z&%]

OfffCia)ates R EiERG S

® LP, NLP (QP,SOCP,SDP, CP, PP)
® Solutions: Descent, Newton, ...




Digging the capability of computers to solve Optimization problems 9
Numeric Methods

[0 Generally we focus on the numeric methods for unconstrained
Ops

® Only -Equality constrained OP could be converted to unconstrained by
using Lagrange Multiplier directly

® Part of Inequality (Only or Hybrid) constrained OP could be converted to
unconstrained — KKT 1

O All of the methods considered here employ a similar iteration
procedure: Gradient Descent Method [£# 5 T ]

where x* = current estimate of x*, the solution

= step-length parameter

s(x®) = §® = gsearch direction in the N
space of the design variables x..




Gradient Descent
Algorithm 1 Gradient Descent
procedure GD(D, 8'9)

1:
2 0« oY

3: while not converged do
4

5

060 VYV (O)

return 6




Stochastic Gradient Desc

Algorlthm 2 Stochastic Gradie ient Descen !

l: procedure SGD(D, ')
%2 8«0
3
1

while not converged do

| fori e shuffle({1, .N}) do
5 for k € {1.2,.... l } do
6: 01 0. + Aa= -J11(0)
7: return 9

Applned to Linear Redressuon SGD is called the
Least Mean Squares (LMS) algorithm

We need a per-example objective:
Let J(0) =Y., JO)(8)

' T _ (i) (2)\2

where J\"(0) = {;(Hlx — y\t)“,




Steepest Gradient descent [&iETFbEE]

xEFD = x4 X g®
d® — — 7 f(x*), - (2.26)

A S(x® 4 4d®) = minf P + W), |
B Pseudo code:

@ Configure: €50, k=1, xM & random [(0,0,...,0)]
@ d® =— f®),

® Stop if ||[dP|| < &; else compute optimal 4, which is
determined by following optimization problem
fx® 4+ 2d®) = minf(x® + dP),

@ Set x* =x® 4+ A4d*® and k>k+1, goto @




L Exambple of Steenest Descent method
221 HEETEES®ETHEG

min f(x) = 2z% 4+ 23,

1
;p],l:; - T o=
nh\x (1 1) '!“E 10

B $F1wER
BR[O ER x LHBERME RN

4.x, —
S L P
27,

— 2

I(Jz-i—]) — xl}) _|_ A&d{t}l,

d =— 7 f&x*"),

Ay S+ AdP) = r}‘g?f(x“’ + ).

Il =2 V5> Ax0=L D" H&, F A 47T

R.RKBEKA=5/18. FEHZL FR/I A

X = x4 A, d =

FG® 4+ Ad®) = minf O + M),

]( (2.26)




00 A,=5/18 R RAFH 2
ma(D = m 0 = [:LZL]

O Then A, is determined by following MIN

= min /(¥ +2®) = ming ([;] + 4 ]) = mins ([ Z53) =

min 2(1 — 42)%4+(1 — 22)?

[l It is again a MIN optimization problem.

B The object function is f(1) = 2(1 — 41)*+(1 — 21)%. We can use derivative
computation again a];_(;) =0
2%x2%(1—4)*x(—4)+2x(1—-20)*(-2)=0
4(1-40)+(1-21) =0
5
A=—




B 2 WEA
FOQOTES xR TR 18

d? = — 7 f(x?) =

Il @ || =% '/?}'i%, AEERHEER M xPHRE. B HMA 4P
BT MR BFIEK A=5/12, 7 m 8 ) p b A

P = xP 4 2d? = i[l]i

2711
3 WEAR
SOOTES x¥ b py B T REA [

3y — (3) EA{_ 2]
d VI (x®) 27L— 1)’

BF |49 >0 FHEREER. FA 8%, I8 %
W FE L=5/.8
4 . (3 w21
XY = x4+ Ad —m[ 4].
B || S G | <550 B R BEER B E] AT 4R

- 5L o)
T 243 4J

e - nlEeq R o — 0 YT

|




Newton's Method

Newton's method for finding a zero can be derived from the Taylor's series
expansion about the current iteration xy,

f(@rs1) = f(zr) + (@re1 — z) f(@r) + O((@rs1 — 1)7)

lgnoring the terms higher than order two and assuming the function next iteration
to be the root (i.e., f(xr+1) = 0), we obtain,

flxr)

T T T i)

This iterative procedure converges quadratically, so

. |S‘3;,;_|_1 —:E*|

Iim

— const.

k— oo |ii,“k. — I*lz




Batch vs stochastic optimizatio
Batch -

dl(x;j, y;)
W"_W""Z a{vj

j_

Online/Stochastic

Minibatch

47 /51



Newton method (variation)

Here is another view of the motivation behind the Newton's method for optimization. At r = T,
flx) can be approximated by

f(2) = a(z) £ (&) + V1@ (@ - 7) + 5 - DT H@)( - ),

which is the quadratic Taylor expansion of f{x) at x = F. g(x) is a quadratic function which, if it

is convex, is minimized by solving Vg(z) =0, i.e., Vf(E) + H(Z)(x — T) = 0, which yields
xr=F— H(Z)"'V[(Z).
The direction —H(Z)~1V f(Z) is called the Newfon direction, or the Newton step.
Newton’s Method:
Step 0 Given xyp, set & — ()
Step 1 dy = —H(x)" 'V (). If di. = 0, then stop.
Step 2 Choose stepsize Ap = 1.

Step 3 Set xpyy — . + M. B — E+ 1. Go to Step 1.

Proposition 17 If H(xz) = 0, then d = —H{x)"'V f(x) is a descent direction.




Example 2: f(zx)=—In{l —x; — ;) —Inxy — Inx,.

1 —
"-T_,I"I{I:I —_ |: 1—11—1*1 1 :| .

l—xy—x2

v [ () + (&)

(1_11_:-;.) (l—r.—n)z"’(i)?

k (k)1 (zk)2 s — ]

D 0.85 0.05 0.58025565008870
1 | 0.717006802721088 | 0.0965986394557823 |  0.450831061926011
2 | 0.512975199133200 | 0.176479706723556 | 0.238483249157462
3 | 0.352478577567272 | 0.273248784105084 | 0.0630610294297446

= (5. 2). f(z*) = 3.295836866.

4 [ 0.338449016006352 | 0.32623807005996 | 0.00574716926379655
5 | 0.333337722134802 | 0.333259330511655 | 7.41328482837195e°
6 | 0.333333343617612 | 0.33333332724128 | 1.19532211855443e°
7 | 0.333333333333333 | 0.333333333333333 | 1.5T0002458683 78— 16




Many other algorithms

[0 Conjugate Gradient Method

[0 Modified Newton's Method

[0 Quasi-Newton Methods (#14-1n)
O

® Davidon-Fletcher-Powell (DEP) Method

W Broyden-Fletcher-Goldfarb-Shanno (BFEGS) Method

»The DFP update was soon superseded by the BFGS formula, which is
generally considered to be the most effective quasi-Newton update.

!' LASEE = s
L5 ;N < o \

Broyden, Fletcher, Goldfarb and Shanno at = TN
the NATO Optimization Meeting A X
(Cambridge, UK, 1983), a seminal meeting

for continuous optimization



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 6(0)) Y

2z 0« Y

3:  while not converged do

4: fori € shuffle({1,2,...,N}) do —
5 0 — 0 —-7VeJ ()

6 return 6 %

In practice, it is common
to implement SGD using
sampling without
replacement Si.e. —
We need a per-example objective: | shuffle({1,2,... N}), even

| though most of the
Let J(0) = ZN . J('i)(g) theory is for sampling

1= with replacement (i.e.

Uniform({1,2,... N}).

W'




* Gradient Descent: .
Compute true gradient exactly fromallN ~ While not converged: 6 < 0 — A\g

examples

» Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

e Mini-Batch SGD: SGD: g = VJ'(0) where i sampled uniformly

. , 5
Approximate true gradient by the average Mini-batch SGD: g = ;Z VJ6)(@)  where i, sampled uniformly Vs
gradient of K randomly chosen examples =1

Three variants of first-order optimization:

N
$ ° , 1 (1)
Gradient Descent: g = V.J(8) = X_; vJ9(0)




Recently...
OIPOPT

Math. Program., Ser. A 106, 25-57 (2006)

Andreas Wiichter - Lorenz T. Biegler

On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming

Received: March 12, 2004 / Accepted: September 2, 2004
Published online: April 28, 2005 — © Springer-Verlag 2005

Abstract. We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear
programming. Local and global convergence properties of this method were analyzed in previous work. Here
we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the fil-
ter method. second-order corrections, and inertia correction of the KKT matrix. Heuristics are also considered
that allow faster performance. This method has been implemented in the IPOPT code, which we demonstrate
in a detailed numerical study based on 954 problems from the CUTET test set. An evaluation is made of several
line-search options, and a comparison is provided with two state-of-the-art interior-point codes for nonlinear
programming.



] CasADi

CasADi — A software framework for nonlinear optimization
and optimal control

Joel A. E. Andersson - Joris Gillis - _
Greg Horn - James B. Rawlings - Moritz Diehl (Submitted)

o T . S.Forth et al. (eds.), Recent Advances in Algorithmic Differentiation. Lecture Notes 297
eXIStI ng refe rence. in Computational Science and Engineering 87, DOI 10.1007/978-3-642-30023-3_27,
© Springer-Verlag Berlin Heidelberg 2012

CasADi: A Symbolic Package for Automatic
Differentiation and Optimal Control

Joel Andersson, Johan Akesson, and Moritz Diehl




[l Inequality constraints can be addressed by Interior
Point (IP) methods, e.g. in IPOPT code

[l Derivatives of problem functions can be
automatically provided e.g. by CasADi optimization
environment ‘e

You can try © But,

| should admit |
did not ©
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[0 Convex Optimization
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Numerical
Algorithms

Methods for Computer Vision,
Machine Learning, and Graphics

Justin Solomon

OO Numerical Algorithms

[0 Methods for Computer Vision, Machine
Learning, and Graphics

1 Justin Solomon
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. O Practical Optimization: Algorithms and
Practical Engineering Applications 2007th

Optimization Edition
Algorithms and Engineering Applications | by Andreas Antoniou, Wu-Sh eng Lu

Andreas Antoniou
Wu-Sheng Lu
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Optimization
Models

Giuseppe Calafiore and
Laurent El Ghaoui

0 Optimization Models
[0 Giuseppe Calafiore, Laurent El Ghaoui
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